35 research outputs found

    A Sequence-based Approach to Analysing and Representing Engineering Project Normality

    Get PDF

    A rank-3 network representation for single-affiliation systems

    Get PDF
    Single-affiliation systems are observed across nature and society. Examples include collaboration, organisational affiliations, and trade-blocs. The study of such systems is commonly approached through network analysis. Multilayer networks extend the representation of network analysis to include more information through increased dimensionality. Thus, they are able to more accurately represent the systems they are modelling. However, multilayer networks are often represented by rank-4 adjacency tensors, resulting in a N2M2 solution space. Single-affiliation systems are unable to occupy the full extent of this space leading to sparse data where it is difficult to attain statistical confidence through subsequent analysis. To overcome these limitations, this paper presents a rank-3 tensor representation for single-affiliation systems. The representations is able to maintain full information of single-affiliation networks in directionless networks, maintain near full information in directed networks, reduce the solution space it resides in (N2M) leading to statistically significant findings, and maintain the analytical capability of multilayer approaches. This is shown through a comparison of the rank-3 and rank-4 representations which is performed on two datasets: the University of Bath departmental journal co-authorship 2000-2017 and an Erdos-Renyi network with random single-affiliation. The results demonstrate that the structure of the network is maintained through both representations, while the rank-3 representation provides greater statistical confidence in node-based measures, and can readily show inter- and intra-affiliation dynamics.Comment: 17 pages, 11 figure

    A 3D in vitro model of the human breast duct:A method to unravel myoepithelial-luminal interactions in the progression of breast cancer

    Get PDF
    Abstract Background 3D modelling fulfils a critical role in research, allowing for complex cell behaviour and interactions to be studied in physiomimetic conditions. With tissue banks becoming established for a number of cancers, researchers now have access to primary patient cells, providing the perfect building blocks to recreate and interrogate intricate cellular systems in the laboratory. The ducts of the human breast are composed of an inner layer of luminal cells supported by an outer layer of myoepithelial cells. In early-stage ductal carcinoma in situ, cancerous luminal cells are confined to the ductal space by an intact myoepithelial layer. Understanding the relationship between myoepithelial and luminal cells in the development of cancer is critical for the development of new therapies and prognostic markers. This requires the generation of new models that allows for the manipulation of these two cell types in a physiological setting. Methods Using access to the Breast Cancer Now Tissue Bank, we isolated pure populations of myoepithelial and luminal cells from human reduction mammoplasty specimens and placed them into 2D culture. These cells were infected with lentiviral particles encoding either fluorescent proteins, to facilitate cell tracking, or an inducible human epidermal growth factor receptor 2 (HER2) expression construct. Myoepithelial and luminal cells were then recombined in collagen gels, and the resulting cellular structures were analysed by confocal microscopy. Results Myoepithelial and luminal cells isolated from reduction mammoplasty specimens can be grown separately in 2D culture and retain their differentiated state. When recombined in collagen gels, these cells reform into physiologically reflective bilayer structures. Inducible expression of HER2 in the luminal compartment, once the bilayer has formed, leads to robust luminal filling, recapitulating ductal carcinoma in situ, and can be blocked with anti-HER2 therapies. Conclusions This model allows for the interaction between myoepithelial and luminal cells to be investigated in an in-vitro environment and paves the way to study early events in breast cancer development with the potential to act as a powerful drug discovery platform

    Supporting engineering design communication using a custom-built social media tool - PartBook

    Get PDF
    AbstractEngineering Design Communication is the main tributary for the sharing of information, knowledge & insights, and is fundamental to engineering work. Engineers spend a significant portion of their day communicating as they ‘fill in the gaps’ left by formal documentation and processes. Therefore, it comes as no surprise that there is much extant literature on this subject. The majority has been descriptive with little prescriptive research involving the introduction of either a tool or process. To begin to address this, previous work reports a Social Media framework to support Engineering Design Communication and this paper builds upon this previous work through the instantiation of the framework within a custom-built Social Media tool hereto referred to as PartBook. This has been prescribed within an eleven week race car design project. The study addresses the validation of the requirements that underpin the Social Media framework as well as investigating the impact the tool has/may have on engineering work, engineering artefacts and engineering project management. In order to do so, data has been captured through user activity, system usability, questionnaire, semi-structured interview and informal feedback
    corecore